
International Journal of Computer Science & Emerging Technologies (IJCSET) 109

Volume 1 Issue 2, August 2010

Shailesh Khapre, Rayer Jean, J. Amudhavel, D. Chandramohan, P. Sujatha and V. Narasimhulu

Department of Computer Science, Pondicherry Central University,

Pondicherry - 605014, India.

{shaileshkhaprerkl, jeanrayar, amudhavel86, chandrumeister, spothula, narasimhavasi}@gmail.com

Abstract: Today‟s typical computing environment has changed
from mainframe systems to small computing systems that often
cooperate via communication networks. Distributed Operating
Systems Concepts and Design addresses the organization and
principles of distributed computing systems. Although it does not
concentrate on any particular operating system or hardware, it
introduces the major concepts of distributed operating systems
without requiring that readers know all the theoretical or
mathematical fundamentals. Distributed operating systems have
many aspects in common with centralized ones, but they also differ
in certain ways. This paper is intended as an introduction to
distributed operating systems, and especially to current university
research about them. After a discussion of what constitutes a
distributed operating system and how it is distinguished from a
computer network, various key design issues are discussed.

Keywords: Distributed Systems, Modern Operating Systems.

1. Introduction

Everyone agrees that distributed systems are going to be

very important in the future. Unfortunately, not everyone

agrees on what they mean by the term “distributed system.”

In this paper we present a view point widely held within

academia about what is and is not a distributed system, we

discuss numerous interesting design issues concerning them,

and finally we conclude with a fairly close look at some

experimental distributed systems that are the subject of

ongoing research at universities[1]. A distributed operating

system is one that looks to its users like an ordinary

centralized operating system but runs on multiple,

independent central processing units (CPUs). The key

concept here is transparency. In other words, the use of

multiple processors should be invisible (transparent) to the

user. Another way of expressing the same idea is to say that

the user views the system as a “virtual uniprocessor,” not as

a collection of distinct machines.

 To make the contrast with distributed operating systems

stronger, let us briefly look at another kind of system, which

we call a “network operating system.” A typical

configuration for a network operating system would be a

collection of personal computers along with a common

printer server and file server [35] for archival storage, all tied

together by a local network. Users are typically aware of

where each of their files are kept and must move files

between machines with explicit “file transfer” commands,

instead of having file placement managed by the operating

system. The system has little or no fault tolerance [3][6][17];

if 1 percent of the personal computers crashes, 1 percent of

the users are out of business, instead of everyone simply

being able to continue normal work, albeit with 1 percent

worse performance.

1.1 Goals and Problem

A more fundamental problem in distributed systems is the

lack of global state information. It is generally a bad idea to

even try to collect complete information about any aspect of

the system in one table. Lack of up-to-date information

makes many things much harder. It is hard to schedule the

processors optimally if you are not sure how many are up at

the moment. Many people, however, think that these

obstacles can be overcome in time, so there is great interest

in doing research on the subject.

2. Network Operating System

Before starting our discussion of distributed operating

systems, it is worth first taking a brief look at some of the

ideas involved in network operating systems, since they can

be regarded as primitive forerunners. Although attempts to

connect computers together have been around for decades,

networking really came into the limelight with the

ARPANET in the early 1970s. The original design did not

provide for much in the way of a network operating system.

Instead, the emphasis was on using the network as a glorified

telephone line to allow remote login and file transfer. Later,

several attempts were made to create net- work operating

systems, but they never were widely used. In more recent

years, several research organizations have connected

collections of minicomputers running the UNIX operating

system into a network operating system, usually via a local

network [9] [19] [29] gives a good survey of these systems,

which we shall draw upon for the remainder of this section.

As we said earlier, the key issue that distinguishes a network

operating system from a distributed one is how aware the

users are of the fact that multiple machines are being used.

This visibility occurs in three primary areas: the file system,

protection, and program execution. Of course, it is possible

to have systems that are highly transparent in one area and

not at all in the other, which leads to a hybrid form.

2.1 File System

When connecting two or more distinct systems together, the

first issue that must be faced is how to merge the file systems

[18] [19] [22] [37]. Three approaches have been tried.

Survey on Distributed Operating Systems: A

Real Time Approach

International Journal of Computer Science & Emerging Technologies (IJCSET) 110

Volume 1 Issue 2, August 2010

 The first approach is not to merge them at all. Going this

route means that a program on ma- chine A cannot access

files on machine B by making system calls. Instead, the user

must run a special file transfer program that copies the

needed remote files to the local machine, where they can

then be accessed normally. Sometimes remote printing and

mail is also handled this way. One of the best-known

examples of networks that primarily supports file transfer

[11] and mail via special programs, and not system call

access to remote files, is the UNIX “uucp” program, and its

network, USENET.

 The next step upward in the direction of a distributed file

system is to have adjoining file systems. In this approach,

programs on one machine can open files on another ma-

chine by providing a path name telling where the file is

located. For example, one could say open(‟

„/machinel/pathname‟ „, READ); open(“machine/pathname”,

READ); open(„f/. ./machinel/pathname”, READ); The latter

naming scheme is used in the Newcastle Connection [19]

and is derived from the creation of a virtual “super

directory” above the root directories of all the connected

machines. Thus “/. .” means start at the local root directory

and go upward one level (to the super directory), and then

down to the root directory of machine.” In Figure 1, the root

directory of three machines, A, B, and C are shown, with a

super directory above them. To access file x from machine

C, one could say open (‟ „/. ./C/x‟ „, READ-ONLY). In the

Newcastle system, the naming tree is actually more general,

since “machine 1” may really be any directory, so one can

attach a machine as a leaf anywhere in the hierarchy, not just

at the top.

 The third approach is the way it is done in distributed

operating systems, namely, to have a single global file

system visible from all machines. When this method is used,

there is one “bin” directory for binary programs, one

password file, and so on. When a program wants to read the

pass- word file it does something like open (‟ „/etc/passwd‟ „,

READ-ONLY) without reference to where the file is. It is up

to the operating system to locate the file and arrange for

transport of data as they are needed. LOCUS is an example

of a system using this approach. The convenience of having

a single global name space is obvious. In addition, this

approach means that the operating system is free to move

files around among machines to keep all the disks equally

full and busy, and that the system can maintain.

 Replicated copies of files if it so chooses. When the user

or program must specify the machine name, the system

cannot decide on its own to move a file to a new machine

because that would change the (user visible) name used to

access the file. Thus in network operating system, control

over file placement must be done manually by the users,

whereas in a distributed operating system it can be done

automatically by the system itself.

Figure 1. A (virtual) superdirectory above the root directory

provides access to remote files.

2.2 Protection

Closely related to the transparency of the file system is the

issue of protection. UNIX and many other operating systems

assign a unique internal identifier to each user. Each file in

the file system has a little table associated with it (called an

i-node in UNIX) telling who the owner is, where the disk

blocks are located, etc. If two previously independent

machines are now connected, it may turn out that some

internal User Identifier (UID), for example, number 12, has

been assigned to a different user on each machine.

Consequently, when user 12 tries to access a remote file, the

remote file system cannot see whether the access is permitted

since two different users have the same UID. One solution to

this problem is to require all remote users wanting to access

files on machine X to first log onto X using a user name that

is local to X. When used this way, the network is just being

used as a fancy switch to allow users at any terminal to log

onto any computer, just as a telephone company switching

center allows A better approach is to have the operating

system provide a mapping between UIDs, so that when a

user with UID 12 on his or her home machine accesses a

remote machine on which his or her UID is 15, the remote

machine treats all accesses as though they were done by user

15. This approach implies that sufficient tables are provided

to map each user from his or her home (machine, UID) pair

to the appropriate UID for any other machine (and that

messages cannot be tampered with).any subscriber to call

any other subscriber. This solution is usually inconvenient

for people and impractical for programs, so something better

is needed. The next step up is to allow any user to access

files on any machine without having to log in, but to have

the remote user appear to have the UID corresponding to

“GUEST” or “DEMO” or some other publicly known login

name. Generally such names have little authority and can

only access files that have been designated as readable or

writable by all users. In a true distributed system there

should be a unique UID for every user, and that UID should

be valid on all machines with- out any mapping. In this way

no protection problems arise on remote accesses to files; as

far as protection goes, a remote access can be treated like a

local access with the same UID. The protection issue makes

the difference between a network operating system and a

distributed one clear: In one case there are various machines,

each with its own user-to-UID mapping and in the other

there is a single, system wide mapping that is valid

everywhere.

A B C

 r s t u v w x y z

International Journal of Computer Science & Emerging Technologies (IJCSET) 111

Volume 1 Issue 2, August 2010

2.3 Execution Location

Program execution is the third area in which machine

boundaries are visible in network operating systems. When a

user or a running program wants to create a new process,

where is the process created? At least four schemes have

been used thus far. The first of these is that the user simply

says “CREATE PROCESS” in one way or another, and

specifies nothing about where. Depending on the

implementation, this can be the best or the worst way to do

it. In the most distributed case, the system chooses a CPU by

looking at the load, location of files to be used, etc. In the

least distributed case, the system always runs the process on

one specific machine (usually the machine on which the user

is logged in). The second approach to process location is to

allow users to run jobs on any machine by first logging in

there. In this model, processes on different machines cannot

communicate or exchange data, but a simple manual load

balancing is possible. The third approach is a special

command that the user types at a terminal to cause a program

to be executed on a specific ma- chine. A typical command

might be remote vax4 who to run program on machine vax4.

In this arrangement, the environment of the new process is

the remote machine. In other words, if that process tries to

read or write files from its current working directory, it will

discover that its working directory is on the remote machine,

and that files that were in the parent process‟s directory are

no longer present. Similarly, files written in the working

directory will appear on the remote machine, not the local

one. The fourth approach is to provide the “CREATE

PROCESS” system call with a parameter specifying where

to run the new process, possibly with a new system call for

specifying the default site. As with the previous method, the

environment will generally be the remote machine. In many

cases, signals and other forms of interprocess

communication between processes do not work properly

among processes on different machines. A final point about

the difference between network and distributed operating

systems is how they are implemented. A common way to

realize a network operating system is to put a layer of

software on top of the native operating systems of the

individual machines. For example, one could write a special

library package that would intercept all the system calls and

decide whether each one was local or remote [19] Although

most system calls can be handled this way without

modifying the kernel, invariably there are a few things, such

as interprocess signals, interrupt characters (e.g., BREAK)

from the keyboard, etc., that are hard to get right. In a true

distributed operating system one would normally write the

kernel from scratch. 1.4 An Example: The Sun Network File

System To provide a contrast with the true distributed

systems described later in this paper, in this section we look

briefly at a network operating system that runs on the Sun

Microsystems‟ workstations. These work stations are

intended for use as personal computers. Each one has a

68000 series CPU, local memory, and a large bit- mapped

display. Workstations can be configured with or without

local disk, as desired. All the workstations run a version of

4.2BSD UNIX specially modified for networking. This

arrangement is a classic example of a network operating

system: Each computer runs a traditional operating system,

UNIX, and each has its own user(s), but with extra features

added to make networking more convenient. During its

evolution the Sun system has gone through three distinct

versions, which we now describe. In the first version each of

the work- stations was completely independent from all the

others, except that a program rep was provided to copy files

from one work- station to another. By typing a command

such as rep Ml:/usr/jim/file.c M2:/usr/ast/f.c it was possible

to transfer whole files from one machine to another. In the

second version, Network Disk (ND), a network disk server

was provided to support diskless workstations. Disk space

on the disk server‟s machine was divided into disjoint

partitions, with each partition acting as the virtual disk for

some (diskless) workstation. Whenever a diskless

workstation needed to read a file, the request was processed

locally until it not down to the level of the device driver, it

which point the block needed was retrieved by sending a

message to the remote disk server. In effect, the network was

merely being used to simulate a disk controller. With this

network disk system, sharing of disk partitions was not

possible. The third version, the Network File Sys- tem

(NFS), allows remote directories to be mounted in the local

file tree on any work- station. By mounting, say, a remote

directory “dot” on the empty local directory “/usr/doc,” all

subsequent references to “/usr/doc” are automatically routed

to the remote system. Sharing is allowed in NFS, so several

users can read files on a remote machine at the same time.

To prevent users from reading other people‟s private files, a

directory can only be mounted remotely if it is explicitly

exported by the workstation it is located on. A directory is

exported by entering a line for it in a file “/etc/exports.” To

improve performance of remote access, both the client ma-

chine and server machine do block caching. Remote services

can be located using a Yellow Pages server that maps service

names onto their network locations. The NFS is

implemented by splitting the operating system up into three

layers. The top layer handles directories, and maps each path

name onto a generalized i-node called a unode consisting of

a (machine, i-node) pair, making each vnode globally

unique.

 Vnode numbers are presented to the middle layer, the

virtual file system (VFS). This layer checks to see if a

requested vnode is local or not. If it is local, it calls the local

disk driver or, in the case of an ND partition, sends a

message to the remote disk server. If it is remote, the VFS

calls the bottom layer with a request to process it remotely.

The bottom layer accepts requests for accesses to remote

vnodes and sends them over the network to the bottom layer

on the serving machine. From there they prop- agate upward

through the VFS layer to the top layer, where they are

reinjected into the VFS layer. The VFS layer sees a request

for a local vnode and processes it normally, without realizing

that the top layer is actually working on behalf of a remote

kernel. The reply retraces the same path in the other

direction. The protocol between workstations has been

carefully designed to be robust in the face of network and

server crashes. Each request completely identifies the file

(by its vnode), the position in the file, and the byte count.

Between requests, the server does not maintain any state

information about which files are open or where the current

file position is. Thus, if a server crashes and is rebooted,

there is no state information that will be lost. The ND and

NFS facilities are quite different and can both be used on the

same workstation without conflict. ND works at a low level

International Journal of Computer Science & Emerging Technologies (IJCSET) 112

Volume 1 Issue 2, August 2010

and just handles remote block I/O without regard to the

structure of the information on the disk. NFS works at a

much higher level and effectively takes re- quests appearing

at the top of the operating system on the client machine and

gets them over to the top of the operating system on the

server machine, where they are processed in the same way as

local requests.

3. Design Issues

Now we turn from traditional computer systems with some

networking facilities added on to systems designed with the

intention of being distributed. In this section we look at five

issues that distributed systems‟ designers are faced with:

communication primitives, naming and protection, resource

management, fault tolerance [4][5][6], services to provide.

Although no list could possibly be exhaustive at this early

stage of development, these topics should provide a

reasonable impression of the areas in which current research

is proceeding.

 3.1 Communication Primitives

The computers forming a distributed sys- tem normally do

not share primary memory, and so communication via shared

memory techniques such as semaphores and monitors is

generally not applicable. Instead, message passing in one

form or another is used [23]. One widely discussed

framework for message-passing systems is the IS0 OS1

reference model, which has seven layers, each performing a

well- defined function. The seven layers are the physical

layer, data- link layer, network layer, transport layer, session

layer, presentation layer, and application layer. By using this

model it is possible to connect computers with widely

different operating systems, character codes, and ways of

viewing the world. Unfortunately, the overhead created by

all these layers is substantial. In a distributed system

consisting primarily of huge mainframes from different

manufacturers, connected by slow leased lines (say, 56

kilobytes per second), the overhead might be tolerable.

Plenty of computing capacity would be available for running

complex protocols, and the narrow bandwidth means that

close coupling between the systems would be impossible

anyway. On the other hand, in a distributed system

consisting of identical microcomputers connected by a lo-

megabyte-per second or faster local network, the price of the

IS0 model is generally too high. Nearly all the experimental

distributed systems discussed in the literature thus far have

opted for a different, much simpler model, so we do not

mention the IS0 model further in this paper.

 3.2 Message Passing

The model that is favored by researchers in this area is the

client-server model, in which a client process wanting some

service (e.g., reading some data from a tile) ends a message

to the server and then waits for a reply message, as shown in

Figure 2. In the most naked form the system just pro- vides

two primitives: SEND and RE- CEIVE. The SEND primitive

specifies the destination and provides a message; the

RECEIVE primitive tells from whom a message is desired

(including “anyone”) and provides a buffer where the

incoming message is to be stored. No initial setup is

required, and no connection is established, hence no tear

down is required.

Figure 2. Client-server model of communication

 Precisely what semantics these primitives ought to have

has been a subject of much controversy among researchers.

Two of the fundamental decisions that must be made are

unreliable versus reliable and no blocking versus blocking

primitives. At one extreme, SEND can put a message out

onto the network and wish it good luck. No guarantee of

delivery is pro- vided, and no automatic retransmission is

attempted by the system if the message is lost. At the other

extreme, SEND can handle lost messages, retransmissions,

and acknowledgments internally, so that when SEND

terminates, the program is sure that the message has been

received and acknowledged.

 Blocking versus Non blocking Primitives: The other

choice is between no blocking and blocking primitives. With

nonblocking primitives, SEND returns control to the user

program as soon as the message has been queued for

subsequent transmission (Or a copy made). If no copy is

made, any Changes the program makes to the data before or

(heaven forbid) while they are being sent are made at the

program‟s peril. When the message has been transmitted (or

copied to a safe place for subsequent transmission), the

program is interrupted to inform it that the buffer may be

reused. The corresponding RECEIVE primitive signals a

willingness to receive a message and provides a buffer for it

to be put into. When a message has arrived, the program is

informed by interrupt, or it can poll for status continuously

or go to sleep until the interrupt arrives. The advantage of

these non blocking primitives is that they provide the

maximum flexibility: Programs can compute and perform

message I/O in parallel in any way they want. Non blocking

primitives also have a disadvantage: They make

programming tricky and difficult. Irreproducible, timing-

dependent programs are painful to write and awful to debug.

Consequently, many people advocate sacrificing some

flexibility and efficiency by using blocking primitives. A.

blocking SEND does not return control to the user until the

message has been sent (unreliable blocking primitive) or

until the message has been sent and an acknowledgment

received (reliable blocking primitive). Either way, the

program may immediately modify the buffer without danger.

A blocking RECEIVE does not return control until a

message has been placed in the buffer. Reliable and

unreliable RECEIVES differ in that the former automatically

acknowledges receipt of a message, whereas the latter does

not. It is not reasonable to combine a reliable SEND with an

unreliable RECEIVE, or vice versa; so the system designers

must make a choice and provide one set or the other.

Blocking and non- blocking primitives do not conflict, so

Client sends

request message

Server sends

reply message

International Journal of Computer Science & Emerging Technologies (IJCSET) 113

Volume 1 Issue 2, August 2010

there is no harm done if the sender uses one and the receiver

the other. Receiver, although buffered message passing can

be implemented in many ways, a typical approach is to

provide users with a system call CREATEBUF, which

creates a kernel buffer, sometimes called a mailbox, of a

user-specified size. To communicate, a sender can now send

messages to the receiver‟s mailbox, where they will be

buffered until requested by the receiver. Buffering is not

only more complex (creating, destroying, and generally

managing the mailboxes), but also raises issues of protection,

the need for special high-priority interrupt messages, what to

do with mail- boxes owned by processes that have been

killed or died of natural causes, and more. A more structured

form of communication is achieved by distinguishing

requests from replies. With this approach, one typically has

three primitives: SEND-GET, GET-REQUEST, and SEND-

REPLY. SEND-GET is used by clients to send re- quests

and get replies. It combines a SEND to a server with a

RECEIVE to get the server‟s reply. GET-REQUEST is done

by servers to acquire messages containing work for them to

do. When a server has carried the work out, it sends a reply

with SEND-REPLY. By thus restricting the message traffic

and using reliable, blocking primitives, one can create some

order in the chaos.

 3.3 Remote Procedure Call (RPC)

The next step forward in message-passing systems is the

realization that the model of “client sends request and blocks

until server sends reply” looks very similar to a traditional

procedure call from the client to the server. This model has

become known in the literature as “remote procedure call”

and has been widely discussed [10] [12]. The idea is to make

the semantics of inter- machine communication as similar as

possible to normal procedure calls because the latter is

familiar and well understood, and has proved its worth over

the years as a tool for dealing with abstraction. It can be

viewed as a refinement of the reliable, blocking SEND-GET,

GET-REQUEST, SENDREP primitives, with a more user-

friendly syntax. The remote procedure call can be organized

as follows. The client (calling program) makes a normal

procedure call, say, p(x, y) on its machine, with the intention

of invoking the remote procedure p on some other machine.

A dummy or stub procedure p must be included in the

caller‟s address space, or at least be dynamically linked to it

upon call. This procedure, which may be automatically

generated by the compiler, collects the parameters and packs

them into a message in a standard format. It then sends the

message to the remote machine (using SEND-GET) and

blocks, waiting for an answer (see Figure 3). At the remote

machine, another stub procedure should be waiting for a

message using GET-REQUEST. When a message comes in,

the parameters are unpacked by an input-handling procedure,

which then makes the local call p(x, y). The remote

procedure p is thus called locally, and so its normal

assumptions about where to find parameters, the state of the

stack, etc., are identical to the case of a purely local call. The

only procedures that know that the call is remote are the

stubs, which build and send the message on the client side

and disassemble and make the call on the server side. The

result of the procedure call follows an analogous path in the

reverse direction.

 Although at first glance the remote procedure call model

seems clean and simple, under the surface there are several

problems. One problem concerns parameter (and result)

passing. In most programming languages, parameters can be

passed by value or by reference. Passing value parameters

over the network is easy; the stub just copies them into the

message and off they go. Passing reference parameters

(pointers) over the network is not so easy. One needs a

unique, system wide pointer for each object so that it can be

remotely accessed. For large objects, such as files, some kind

of capability mechanism [36] could be set up, using

capabilities as pointers.

 Figure 3. Remote procedure call.

 Leans, the amount of overhead and mechanism needed to

create a capability and send it in a protected way is so large

that this solution is highly undesirable. Still another problem

that must be dealt with is how to represent parameters and

results in messages. This representation is greatly

complicated when different types of machines are involved

in a communication. A floating-point number produced on

one machine is unlikely to have the same value on a different

machine, and even a negative integer will create problems

between the l‟s complement and 2‟s complement machines.

Converting to and from a standard for- mat on every

message sent and received is an obvious possibility, but it is

expensive and wasteful, especially when the sender and

receiver do, in fact, use the same internal format. If the

sender uses its internal format (along with an indication of

which format it is) and lets the receiver do the conversion,

every machine must be pre- pared to convert from every

other format. When a new machine type is introduced, much

existing software must be upgraded. Any way it is done,

with remote procedure call (RPC) or with plain messages, it

is an unpleasant business. Some of the unpleasantness can be

hid- den from the user if the remote procedure call

mechanism is embedded in a programming language with

strong typing, so that the receiver at least knows how many

parameters to expect and what types they have. In this

respect, a weekly typed language such as C, in which

procedures with a variable number of parameters are

common, is more complicated to deal with. Still another

problem with RPC is the issue of client-server binding.

Consider, for example, a system with multiple file servers. If

a client creates a file on one of the file servers, it is usually

desirable that sub-sequent writes to that file go to the file

server where the file was created. With mailboxes, arranging

for this is straight- forward. The client simply addresses the

WRITE messages to the same mailbox that the CREATE

message was sent to. Since each file server has its own

mailbox, there is no ambiguity. When RPC is used, the

situation is more complicated, since the entire client does is

put a procedure call such as write (File Descriptor, Buffer

Address, Byte Count); in his program. RPC intentionally

Client Machine Server Machine

Client

proc.

Client

stub

Server

stub

Server

proc.

International Journal of Computer Science & Emerging Technologies (IJCSET) 114

Volume 1 Issue 2, August 2010

hides all the details of locating servers from the client, but

sometimes, as in this example, the details are important. In

some applications, broadcasting and multicasting (sending to

a set of destinations, rather than just one) is useful. For

example, when trying to locate a certain person, process, or

service, sometimes the only approach is to broadcast an

inquiry message and wait for the replies to come back. RPC

does not lend itself well to sending messages to sets of

processes and getting answers back from some or all of

them. The semantics are completely different. Despite all

these disadvantages, RPC re- mains an interesting form of

communication and much current research is being

addressed toward improving it and solving the various

problems discussed above.

 3.4 Naming and Protection

All operating systems support objects such as files,

directories, segments, mailboxes, processes, services,

servers, nodes, and I/O devices. When a process wants to

access one of these objects, it must present some kind of

name to the operating system to specify which object it

wants to access. In some instances these names are ASCII

strings designed for human use; in others they are binary

numbers used only internally. In all cases they have to be

managed and protected from misuse.

3.4.1 Naming and Protection

Naming [33] can best be seen as a problem of mapping

between two domains. For example, the directory system in

UNIX provides a mapping between ASCII path names and i-

node numbers. When an OPEN system call is made, the

kernel converts the name of the file to be opened into its i-

node number. Internal to the kernel, files are nearly always

referred to by i-node number, not ASCII string. Just about all

operating systems have something similar. In a distributed

system a separate name server is sometimes used to map

user-chosen names (ASCII strings) onto objects in an

analogous way. Another example of naming is the map- ping

of virtual addresses onto physical ad- dresses in a virtual

memory system. The paging hardware takes a virtual address

as input and yields a physical address as out- put for use by

the real memory. In some cases naming implies only a single

level of mapping, but in other cases it can imply multiple

levels. For example, to use some service, a process might

first have to map the service name onto the name of a server

process that is prepared to offer the service. As a second

step, the server would then be mapped onto the number of

the CPU on which that process is running. The mapping

need not always be unique, for example, if there are multiple

processes prepared to offer the same service.

3.4.2 Name Servers

 In centralized systems, the problem of naming can be

effectively handled in a straight- forward way. The system

maintains a table or database providing the necessary name-

to-object mappings. The most straightforward generalization

of this approach to distributed systems is the single name

server model. In this model, a server accepts names in one

domain and maps them onto names in another domain. For

example, to locate services in some distributed systems, one

sends the service name in ASCII to the name server, and it

replies with the node number where that service can be

found, or with the process name of the server process, or

perhaps with the name of a mailbox to which requests for

service can be sent. The name server‟s database is built up

by registering services, processes, etc., that want to be

publicly known. File directories can be regarded as a special

case of name service. Although this model is often

acceptable in a small distributed system located at a single

site, in a large system it is undesirable to have a single

centralized component (the name server) whose demise can

bring the whole system to a grinding halt. In addition, if it

becomes overloaded, performance will degrade.

Furthermore, in a geo- graphically distributed system that

may have nodes in different cities or even countries, having

a single name server will be inefficient owing to the long

delays in accessing it. The next approach is to partition the

system into domains, each with its own name server. If the

system is composed of multiple local networks connected by

gate- ways and bridges, it seems natural to have one name

server per local network. One way to organize such a system

is to have a global naming tree, with files and other objects

having names of the form: /country/city/network/pathname.

When such a name is presented to any name server, it can

immediately route the request to some name server in the

designated country, which then sends it to a name server in

the designated city, and so on until it reaches the name server

in the network where the object is located, where the

mapping can be done. Telephone numbers use such a

hierarchy, composed of country code, area code, exchange

code (first three digits of telephone number in North

America), and sub- scriber line number. Having multiple

name servers does not necessarily require having a single,

global naming hierarchy. Another way to organize the name

servers is to have each one effectively maintain a table of,

for example, (ASCII string, pointer) pairs, where the pointer

is really a kind of capability for any object or domain in the

system. When a name, say a/b/c, is looked up by the local

name server, it may well yield a pointer to another domain

(name server), to which the rest of the name, b/c, is sent for

further processing (see Figure 4). This facility can be used to

provide links (in the UNIX sense) to files or objects whose

precise whereabouts is managed by a remote name server.

Thus if a file foobar is located in another local network, n,

with name server n.s, one can make an entry in the local

name server‟s table for the pair (x, n.s) and then access

xlfoobar as though it were a local object. Any appropriately

authorized user or process knowing the name xlfoobar could

make its own synonym s and then perform accesses using

s/x/foobar. Each name server parsing a name that involves

multiple name servers just strips off the first component and

passes the rest of the name to the name server found by

looking up the first component locally. A more extreme way

of distributing the name server is to have each machine man-

age its own names. To look up a name, one broadcasts it on

the network. At each ma- chine, the incoming request is

passed to the local name server, which replies only if it finds

a match. Although broadcasting is easiest over a local

network such as a ring net or CSMA net (e.g., Ethernet), it is

also possible over store-and-forward packet switching

networks such as the ARPANET [34]. Although the normal

use of a name server is to map an ASCII string onto a binary

International Journal of Computer Science & Emerging Technologies (IJCSET) 115

Volume 1 Issue 2, August 2010

number used internally to the system, such as a process

identifier or machine number, once in a while the inverse

mapping is also useful. For example, if a machine crashes,

upon rebooting it could present its (hard- wired) node

number to the name server to ask what it was doing before

the crash, that is, ask for the ASCII string corresponding to

the service that it is supposed to be offering so that it can

figure out what pro- gram to reboot.

Figure 4. Distributing the lookup of a/b/c over three name

servers

3.4.3 Process Allocation

One of the key resources to be managed in a distributed

system is the set of available processors. One approach that

has been proposed for keeping tabs on a collection of

processors is to organize them in a logical hierarchy

independent of the physical structure of the network, as in

MICROS. This approach organizes the machines like people

in corporate, military, academic, and other real-world

hierarchies. Some of the machines are workers and others are

managers. For each group of k workers, one manager

machine (the “department head”) is assigned the task of

keeping track of who is busy and who is idle. If the system is

large, there will be an unwieldy number of department

heads; so some machines will function as “deans,” riding

herd on k department heads. If there are many deans, they

too can be organized hierarchically, with a “big cheese”

keeping tabs on k deans. This hierarchy can be extended ad

infinitum, with the number of levels needed growing

logarithmically with the number of workers. Since each

processor need only maintain communication with one

superior and k subordinates, the information stream is

manageable [15]. An obvious question is, “What happens

when a department head, or worse yet, a big cheese, stops

functioning (crashes)?” One answer is to promote one of the

direct subordinates of the faulty manager to fill in for the

boss. The choice of which one can either be made by the

subordinates themselves, by the deceased‟s peers, or in a

more autocratic system, by the sick man- ager‟s boss. To

avoid having a single (vulnerable) manager at the top of the

tree, one can truncate the tree at the top and have a

committee as the ultimate authority. When a member of the

ruling committee malfunctions, the remaining members

promote someone one level down as a replacement.

Although this scheme is not completely distributed, it is

feasible and works well in practice. In particular, the system

is self- repairing, and can survive occasional crashes of both

workers and managers without any long-term effects. In

MICROS, the processors are mono- programmed, so if a job

requiring S processes suddenly appears, the system must

allocate S processors for it. Jobs can be created at any level

of the hierarchy. The strategy used is for each manager to

keep track of approximately how many workers below it are

available (possibly several levels below it). If it thinks that a

sufficient number are available, it reserves some number R

of them, where R 2 S, because the estimate of available

workers may not be exact and some machines may be down.

If the manager receiving the request thinks that it has too few

processors avail- able, it passes the request upward in the

tree to its boss. If the boss cannot handle it either, the request

continues propagating upward until it reaches a level that has

enough available workers at its disposal. At that point, the

manager splits the request into parts and parcels them out

among the managers below it, which then do the same thing

until the wave of scheduling requests hits bottom. At the

bottom level, the processors are marked as “busy,” and the

actual number of processors allocated is re- ported back up

the tree. To make this strategy work well, R must be large

enough so that the probability is high that enough workers

will be found to handle the whole job. Otherwise, the re-

quest will have to move up one level in the tree and start all

over, wasting considerable time and computing power. On

the other hand, if R is too large, too many processors will be

allocated, wasting computing capacity until word gets back

to the top and they can be released. The whole situation is

greatly complicated by the fact that requests for processors

can be generated randomly anywhere in the system, so at any

instant, multiple requests are likely to be in various stages of

the allocation algorithm, potentially giving rise to out-of-date

estimates of available workers, race conditions, deadlocks,

and more. In Van, a mathematical analysis of the problem is

given and various other aspects not de- scribed here are

covered in detail.

3.4.4 Scheduling

The hierarchical model provides a general model for

resource control but does not provide any specific guidance

on how to do scheduling. If each process uses an entire

processor (i.e., no multiprogramming), and each process is

independent of all the others, any process can be assigned to

any processor at random. However, if it is common that

several processes are working together and must

communicate frequently with each other, as in UNIX

pipelines or in cascaded (nested) remote procedure calls,

then it is desirable to make sure that the whole group runs at

once. In this section we address that issue. Let us assume

that each processor can handle up to N processes.

 If there are plenty of machines and N is reasonably large,

the problem is not finding a free machine (i.e., a free slot in

some process table), but something more subtle. The basic

difficulty can be illustrated by an example in which

processes A and B run on one machine and processes C and

D run on another. Each machine is time shared in, say, l00-

millisecond time slices, with A and C running in the even

slices, and B and D running in the odd ones, as shown in

Figure 5a. Suppose that A sends many messages or makes

many remote procedure calls to D. During time slice 0, A

starts up and immediately calls D, which unfortunately is not

running because it is now C‟s turn. After 100 milliseconds,

process switching takes place, and D gets A‟s message,

carries out the work, and quickly re- plies. Because B is now

running, it will be another 100 milliseconds before A gets

a

x

y

z

b

c

d

e

a

x

c

r

Name server 1

looks up a/b/c

Name server 2

looks up b/c
Name server 3

looks up c

International Journal of Computer Science & Emerging Technologies (IJCSET) 116

Volume 1 Issue 2, August 2010

the reply and can proceed. The net result is one message

exchange every 200 milliseconds. What is needed is a way to

ensure that processes that communicate frequently run

simultaneously. Although it is difficult to determine

dynamically the inter process communication patterns, in

many cases a group of related processes will be started off

together.

(a) (b)

Figure 5. (a) Two jobs running out of phase with each other.

(b) Scheduling matrix for eight machines, each with six time

slots. The X‟s indicated allocated slots.

 For example, it is usually a good bet that the filters in a

UNIX pipeline will communicate with each other more than

they will with other, previously started processes. Let us

assume that processes are created in groups, and that

intergroup communication is much more prevalent than

intergroup communication. Let us further assume that a

sufficiently large number of machines are available to handle

the largest group, and that each machine is multiprogrammed

with N process slots (N- way multiprogramming). Previous

work has proposed several algorithms based on the concept

of co- scheduling, which takes interprocess communication

patterns into account while scheduling to ensure that all

members of a group run at the same time. The first algorithm

uses a conceptual matrix in which each column is the process

table for one machine, as shown in Figure 5b. Thus, column

4 consists of all the processes that run on machine 4. Row 3

is the collection of all processes that are in slot 3 of some

ma- chine, starting with the process in slot 3 of machine 0,

then the process in slot 3 of machine 1, and so on. The gist

of his idea is to have each processor use a round-robin

scheduling algorithm with all processors first running the

process in slot 0 for a fixed period, then all processors

running the process in slot 1 for a fixed period, etc. A

broadcast message could be used to tell each processor when

to do process switching, to keep the time slices

synchronized. By putting all the members of a process group

in the same slot number, but on different machines, one has

the advantage of N-fold parallelism, with a guarantee that all

the processes will be run at the same time, to maximize

communication through- put. Thus in Figure 5b, four

processes that must communicate should be put into slot 3,

on machines 1, 2, 3, and 4 for optimum performance. This

scheduling technique can be combined with the hierarchical

model of process management used in MICROS by having

each department head maintain the matrix for its workers,

assigning processes to slots in the matrix and broadcasting

time signals. Ouster out also described several variations to

this basic method to improve performance. One of these

breaks the matrix into rows and concatenates the rows to

form one long row. With k machines, any k consecutive slots

belong to different machines. To allocate a new process

group to slots, one lays a window k slots wide over the long

row such that the leftmost slot is empty but the slot just

outside the left edge of the window is full. If sufficient

empty slots are present in the window, the processes are

assigned to the empty slots; otherwise the window is slid to

the right and the algorithm repeated. Scheduling is done by

starting the window at the left edge and moving rightward by

about one window‟s worth per time slice, taking care not to

split groups over windows. Usterhout‟s paper discusses these

and other methods in more detail and give some performance

results.

3.4.5 Load Balancing

The goal of Usterhout‟s work is to place processes that work

together on different processors, so that they can all run in

parallel. Other researchers have tried to do precisely the

opposite, namely, to find sub- sets of all the processes in the

system that are working together, so that closely related

groups of processes can be placed on the same machine to

reduce inter process communication costs [30] [31] [32]. Yet

other researchers have been concerned primarily with load

balancing, to prevent a situation in which some processors

are overloaded while others are empty [8] [38]. Of course,

the goals of maximizing throughput, minimizing response

time, and keeping the load uniform are to some extent in

conflict, so many of the researchers try to evaluate different

com- promises and trade-offs. Each of these different

approaches to scheduling makes different assumptions about

what is known and what is most important. The people

trying to cluster processes to minimize communication costs,

for example, assume that any process can run on any

machine, that the computing needs of each process are

known in advance, and that the interprocess communication

traffic between each pair of processes is also known in

advance. The people doing load balancing typically make the

realistic assumption that nothing about the future behavior of

a process is known.

(a) (b)

Figure 7. Two ways of statistically allocating processes

(nodes in the graph) to machines. Arcs show which pairs of

process communicate.

 People making real systems, who care less about

optimality than about devising algorithms that can actually

be used, Let us now briefly look at each of these approaches.

A C

B D

A C

 B D

A C

B D

X X

 X X

 X X X

X X

 X X X

 X X

 1

 0

 1

 0

 3

 2

 5

 4

 7

 6

Time

slot Machine

Time

slot Machine

 0

 1

 2

 3

 4

 5

 0

 1

 2

 3

 4

 5

Machine 2 Machine 1
Machine 2 Machine 1

International Journal of Computer Science & Emerging Technologies (IJCSET) 117

Volume 1 Issue 2, August 2010

 Graph-Theoretic Models: If the system consists of a

fixed number of processes, each with known CPU and

memory requirements, and a known matrix giving the

average amount of traffic between each pair of processes,

scheduling can be attacked as a graph-theoretic problem. The

system can be represented as a graph, with each process a

node and each pair of communicating processes connected

by an arc labeled ith the data rate between them. The problem

of allocating all the processes to k processors then reduces to

the problem of partitioning the graph into k disjoint sub

graphs, such that each sub graph meets certain constraints

(e.g., total CPU and memory requirements below some

limit). Arcs that are entirely within one sub graph represent

internal communication within a single processor (= fast),

whereas arcs that cut across sub graph boundaries represent

communication be- teen two processors (= slow). The idea is

to find a partitioning of the graph that meets the constraints

and minimizes the network traffic, or some variation of this

idea. Figure 7a depicts a graph of interacting processors with

one possible partitioning of the processes between two

machines. Figure 7b shows a better partitioning, with less

intermachine traffic, assuming that all the arcs are equally

weighted. Many papers have been written on this subject

[30] [31]. The results are somewhat academic, since in real

systems virtually none of the as- assumptions (fixed number

of processes with static requirements, known traffic matrix,

error-free processors and communication) are ever met.

 Heuristic Load Balancing: Here the idea is for each

processor to estimate its own load continually, for processors

to exchange load in- formation, and for process creation and

migration to utilize this information. Various methods of

load estimation are possible. One way is just to measure the

number of runnable processes on each CPU periodically and

take the average of the last n measurements as the load.

Another way [20] is to estimate the residual running times of

all the processes and define the load on a processor as the

number of CPU seconds that all its processes will need to

finish. The residual time can be estimated mostly simply by

assuming it is equal to the CPU time already consumed.

Bryant and Finkel also discuss other estimation techniques in

which both the number of processes and length of remaining

time are important. When round- robin scheduling is used, it

is better to be competing against one process that needs 100

seconds than against 100 processes that each need 1 second.

Once each processor has computed its load, a way is needed

for each processor to find out how everyone else is doing.

One way is for each processor to just broadcast its load

periodically. After receiving a broadcast from a lightly

loaded machine, a processor should shed some of its load by

giving it to the lightly loaded processor. This algorithm has

several problems. First, it requires a broadcast facility, which

may not be available. Second, it consumes considerable

bandwidth for all the “here is my load” messages. Third,

there is a great danger that many processors will try to shed

load to the same (previously) lightly loaded processor at

once. A different strategy [8] is for each processor

periodically to pick another processor (possibly a neighbor,

possibly at random) and exchange load information with it.

After the exchange, the more heavily loaded processor can

send processes to the other one until they are equally loaded.

In this model, if 100 processes are suddenly created in an

otherwise empty system, after one ex- change we will have

two machines with 50 processes and after two exchanges

most probably four machines with 25 processes. Processes

diffuse around the network like a cloud of gas. Actually

migrating running processes is trivial in theory, but close to

impossible in practice. The hard part is not moving the code,

data, and registers, but moving the environment, such as the

current position within all the open files, the current values

of any running timers, pointers or file descriptors for

communicating with tape drives or other I/O devices, etc. All

of these problems relate to moving variables and data

structures related to the process that are scattered about

inside the operating system. What is feasible in practice is to

use the load information to create new processes on lightly

loaded machines, in- stead of trying to move running

processes. If one has adopted the idea of creating new

processes only on lightly loaded machines, another

approach, called bidding, is possible [40]. When a process

wants some work done, it broadcasts a re- quest for bids,

telling what it needs (e.g., a 68000 CPU, 512K memory,

floating point, and a tape drive). Other processors can then

bid for the work, telling what their workload is, how much

memory they have available, etc. The process making the

request then chooses the most suitable machine and creates

the process there. If multiple request-for-bid messages are

outstanding at the same time, a processor accepting a bid

may discover that the workload on the bidding machine is

not what it expected because that processor has bid for and

won other work in the meantime.

 3.4.6 Distributed Deadlock Detection

Some theoretical work has been done in the area of detection

of deadlocks in distributed systems. How applicable this

work may be in practice remains to be seen. Two kinds of

potential deadlocks are resource deadlocks and

communication deadlocks. Re- source deadlocks are

traditional deadlocks, in which all of some set of processes

are blocked waiting for resources held by other blocked

processes. For example, if A holds X and B holds Y, and A

wants Y and B wants X, a deadlock will result. In principle,

this problem is the same in centralized and distributed

systems, but it is harder to detect in the latter because there

are no centralized tables giving the status of all resources.

The problem has mostly been studied in the context of

database systems [39]. The other kind of deadlock that can

occur in a distributed system is a communication deadlock.

Suppose A is waiting for a message from B and B is waiting

for C and C is waiting for A. Then we have a deadlock. [21]

present an algorithm for detecting (but not preventing)

communication deadlocks. Very crudely summarized, they

assume that each process that is blocked waiting for a

message knows which process or processes might send the

message. When a process logically blocks, they assume that

it does not really block but instead sends a query message to

each of the processes that might send it a real (data)

message. If one of these processes is blocked, it sends query

messages to the processes it is waiting for. If certain

messages eventually come back to the original process, it can

conclude that a deadlock exists. In effect, the algorithm is

looking for a knot in a directed graph.

International Journal of Computer Science & Emerging Technologies (IJCSET) 118

Volume 1 Issue 2, August 2010

4. DOS Survey

 4.1 Comparison Criteria

The main goal of distributed file systems (DFS) or

distributed operating systems (DOS) is to provide some level

of transparency to the users of a computer network.

 We have tried to develop a scheme -- referred to as a

catalog of criteria -- that allows us to describe the systems in

an implementation independent way. The main questions to

be answered are: What kind of transparency levels are

provided, how each kind of transparency achieved is what

kind of communication strategy has been proposed and

finally, does the distributed character of the system allow

increased availability and reliability. The last question leads

us to an analysis of replication schemes used and to an

evaluation of proposed failure handling/recovery strategies.

 4.1.1 Transparency Levels

We distinguish five levels of transparency. We speak of

location transparency existing, when a process requesting a

particular network resource does not necessarily know where

the resource is located. Access transparency gives a user

access to both local and remote located resources in the same

way.

 For reasons of availability, resources are sometimes

replicated. If a user does not know whether a resource has

been replicated or not, replication transparency exists.

 The problem of synchronization is well-known. In a

distributed environment this problem arises in an extended

form. Encapsulating concurrency control inside a proposed

system is what is meant by concurrency transparency. This

includes schemes that provide system-wide consistency as

well as weaker schemes in which user interaction can be

necessary to recreate consistency. The distinction between

transaction strategies and pure semaphore-based techniques

is introduced in a special evaluation.

 The last level of transparency is failure transparency.

Network link failures or node crashes are always present

within a network of independent nodes. Systems that provide

stable storage, failure recovery and some state information

are said to be failure transparent.

 4.1.2 Heterogeneity

This survey furthermore gives information on the

heterogeneity of the systems, i. e., assumptions made about

the hardware and which operating system is used and

whether that O.S. is a modified or look-alike version of

another O.S.

 We describe the underlying network. Is it a LAN, if so,

what kind of LAN, or have gateways [7] been developed to

integrate the systems into a WAN world.

 4.1.3 Changes Made

There are two main forms of implementing distribution.

First, a new layer can be inserted on top of an existing

operating system that handles requests and provides remote

access as well as some of the transparency levels.

 Second, the distributed system can be implemented as a

new kernel that runs on every node. This differentiation is a

first hint of how portable or compatible a system is [28].

Some systems do not distribute all kernel facilities to all

nodes. Dedicated servers can be introduced (strict

client/server model). Some systems distribute a small kernel

to all nodes and the rest of the utilities to special nodes (non-

strict client/server model). Another group of systems are the

so called integrated systems. In an integrated system each

node can be a client, a server or both. This survey tries to

describe these differences.

 4.1.4 Communication Protocols

Message passing is the main form of communication

(excepting multiprocessor systems which can use shared

memory). We show which kind of protocols are used and

describe specialized protocols if implemented.

 4.1.5 Connection and RPC Facility

The kind of connection established by the (peer)

communication partners is another important criteria. We

distinguish between point-to-point connections (virtual

circuits), datagram-style connections, and connections based

on pipes or streams. If a remote procedure call (RPC) facility

is provided we add this information as well.

 4.1.6 Semantics

The users of a distributed system are interested in the way

their services are provided and what their semantics are. We

distinguish may-be (which means that the system guarantees

nothing), at-least-once semantics (retrying to fulfill a service

until acknowledged, sometimes done twice or more

frequently), at-most-once semantics (mostly achieved by

duplicate detection) and exactly-once semantics. The last

kind is achieved by making a service an atomic issue (so

called all-or-nothing principle).

 4.1.7 Naming Strategy

We describe the naming philosophy and distinguish between

object-oriented and traditional hierarchical naming

conventions. Our overview includes the proposed name

space itself as well as the mechanisms used to provide a

system-spanning name space (e. g. mounting facilities or

super root-approaches).

 4.1.8 Security Issue

Security plays an important role within distributed systems,

since the administration could possibly be decentralized and

participating hosts cannot necessarily be trusted. Intruders

may find it easy to penetrate a distributed environment.

Therefore, sophisticated algorithms for encryption and

authentication are necessary. We add four entries concerning

this issue. First, encryption is used if no plain text will be

exchanged over the communication media. Second, some

systems make use of special hardware components to

achieve security during the message transfer. Third,

capabilities are provided that enable particular users access

to resources in a secure and predefined way. Finally, we

introduce the entry mutual authentication. This feature is

provided if a sort of hand-shake mechanism is implemented

that allows bilateral recognition of trustworthiness.

 4.1.9 Failure handling

Failure handling/recovery is a very critical issue. Since some

systems are designed to perform well in an academic

environment and some systems are made highly reliable for

International Journal of Computer Science & Emerging Technologies (IJCSET) 119

Volume 1 Issue 2, August 2010

commercial use, trade-off decisions must be taken into

account. We add the following four entries to our catalog of

criteria. Does the system provide recovery after a client or a

server crash, does it support orphan detection and deletion,

and is there non-volatile memory called stable storage

 4.1.10 Availability

Distributed systems can be made highly available by

replicating resources or services among the nodes of the

network. Thus, individual indispositions of nodes can be

masked. (Nested) transactions are well-suited in a computer

network. Our overview covers this feature. First of all, we

look at the concurrency control scheme; i. e. availability is

introduced through the following mechanisms:

synchronization scheme, (nested) transaction facility, and

replication.

 4.1.11 Process Migration

Our final point of interest is process migration. Some object-

oriented systems provide mobile objects; some traditional

process-based systems support migration of processes.

Sometimes, these approaches come along with load-

balancing schemes to increase the system's performance. We

include this issue in our survey.

 4.2 Table of Comparison

The table of comparison is given to summarize and compare

the systems discussed. It should be viewed carefully, since in

certain ways any categorized comparison can be misleading.

However, this way an easily legible overview may be

obtained. The table provides quick access to a large amount

of highly condensed information. The entries are organized

according to the criteria used to describe the systems.

Sometimes, a similar issue or a comparable feature for an

entry has been implemented. We mark this with a special

symbol (+). Here Table 1 describes the types of system and

transparency issues like replication, access, withstanding

failures, etc. In the comparison, Cedar, Gutenberg, NCA/

NCS, Swallow performs well among all other DOS‟s [2]

[13] [14] [16] [25] [27]. The comparison is given as follows

Table 2. Table of comparison – Hardware Requirements

Table 1: Table of comparison – Types of System & Transparency of Different Types of DOS‟s.

International Journal of Computer Science & Emerging Technologies (IJCSET) 120

Volume 1 Issue 2, August 2010

 Table 2 describes the hardware requirements of various

DOS and supporting version types of OS they are using.

Here most of the Dos are using UNIX as their supporting

OS.

 Table 3 describes the changes made the different types of

protocols used for the communication. The communication

part includes standard, specialized protocols, shared memory

and RPC based protocols. And also it compares the

connection types such as VC, datagram, Pipes/Streams of the

different types of DOS. In the below comparison, Cronus,

Mach, performs well again all the Dos in the case of new

kernel [24] [26], shared memory etc.

Table 3. Table of comparison –Kernel, Communication and

Connection

 Table 4 describes the issues like semantics, naming and

security. In the below comparison Amoeba, GAFFES, and

Alphine performs well especially in the object oriented and

Encryption related things.

Table 4. Table of comparison – Semantics, Naming and

Security

International Journal of Computer Science & Emerging Technologies (IJCSET) 121

Volume 1 Issue 2, August 2010

 Table 5 describes about the comparison of availabity

issues dealing with synchronization, Replication and the

issues regarding failuires such as, recovery client crash,

recovery server crash, stabe storage, orphan detection etc. In

the below comparison, Amoeba, Argus, Cedar, Locus,

Swallow, XDFS performs well among all the tghings

specially in the issues like replication, recovery server crash,

process migration.

Table 5. Table of comparison – Availability, Failures

5. Summary

 Distributed operating systems are still in an early phase

of development, with many unanswered questions and

relatively little agreement among workers in the field about

how things should be done. Many experimental systems use

the client-server model with some form of remote procedure

call as communication base, but there are also systems built

on the connection model. Relatively little has been done on

distributed naming, protection, and resource management,

other than building straight-forward name servers and

process servers. Fault tolerance is an up-and-coming area,

with work progressing in redundancy techniques and atomic

actions. Finally, a considerable amount of work has gone

into the construction of file servers, print servers, and

International Journal of Computer Science & Emerging Technologies (IJCSET) 122

Volume 1 Issue 2, August 2010

various other servers, but here too there is much work to be

done. The only conclusion that we draw is that distributed

operating systems will be an interesting and fruitful area of

research for a number of years to come.

References

[1] Adams, C. J., Adams, G. C., Waters, A. G., Leslie, I.,

and Kirk, P., “Protocol Architecture of the Universe

Project,” In Proceedings of the 6th International

Conference on Computer Communication (London,

Sept. 7-10). International Conference for Computer

Communication, pp. 379- 383, 2001.

[2] Almes, G. T., Black, A. P., Lazowska, E. D., and Ni! Ie,

J. D., “The Eden System: A Technical Review,” IEEE

Trans. Softw. Eng. Se-11 (Jan.). 43-59, 2006.

[3] Anderson, T., and Lee, P. A. Fault Tolerance, “Principles

And Practice,” Prentice-Hall International, London,

2000.

[4] Avizienis, A., and Chen, L., “On the Implementation of

N-Version Programming for Software Fault-Tolerance

During Execution,” In Proceedings of the International

Computer Software and Applications Conference. IEEE,

New York, pp. 149-155, 2008.

[5] Avizienis, A., and Kelly, J., “Fault Tolerance by Design

Diversity,” Computer 17 (Aug.), 66-80, 1984.

[6] Bal, H. E., Van Renesse, R., and Tanenbaum, A. S., “A

Distributed, Parallel, Fault Tolerant Computing

System,” Rep. 1%106, Dept. of Mathematics and

Computer Science. Vriie Univ., The Netherlands, Oct.

1999.

[7] Ball, J. E., Feldman, J., Low, R., Rashid, R., and

Rovner, P., Rig, “Rochester‟s Intelligent Gateway:

System Overview,” IEEE Trans. Softw. Eng. Se-Z

(Dec.), 321-329.

[8] Barak, A., and Shiloh, A. A., “Distributed Load-

Balancing Policy for a Multicomputer,” Softw. Pratt.

Expert. 1.5 (Sept.), 901-913, 1985.

[9] Birman, K. P., and Rowe, L. A., “A Local Network

Based on the Unix Operating System,” IEEE Trans.

Softw. Eng. Se-8 (Mar.), 137-146, 1982.

[10] Birrell, A. D.,” Secure Communication Using Remote

Procedure Calls,” ACM Trans. Compute. Syst. 3, 1

(Feb.), 1-14, 1985.

[11] Birrell, A. D., and Needham, R. M., “A Universal File

Server,” IEEE Trans. Softw. Eng. Se-6, (Sept.), 450-

453, 1980.

[12] Birrell, A. D., and Nelson, B. J., “Implementing Remote

Procedure Calls,” ACM Trans. Compute. Syst. 2, 1

(Feb.), 39-59, 1984.

[13] Birrell, A. D., Levin, R., Needham, R. M., and

Schroeder, M., “Grapevine: An Exercise in Distributed

Computing,” Commun. Acm 25, 4 (Apr.), 260-274,

1982.

[14]Birrell, A. D., Levin, R., Needham, R. M., and

Schroeder, M., “Experience with Grape-Vine: The

Growth of a Distributed System. ACM Trans. Compute.

Syst. 2, 1 (Feb.), 3-23, 1984.

[15] Black, A. P. “An Asymmetric Stream Communications

System,” Oper. Syst. Rev. (ACM) 17, 5, 4-10, 1983.

[16]Black, A. P., “Supporting Distributed Applications:

Experience with Eden,” In Proceedings of the 10th

Symposium on Operating Systems Principles (Orcas

Island, Wash., Dec. L-4). ACM, New York, pp. 181-

193, 1985.

[17]Borg, A., Baumbach, J., and Glazer, S., “A Message

System Supporting Fault Tolerance,” Oper.Syst. Rev.

(ACM) 17, 5, 90-99, 1983.

[18] Brown, M. R., Kolling, K. N. and Tag. E. A., “The

Alnine File System,” ACM Trans. Com- Put. Syst. 3, 4

~Nov.), 261-293, 1985.

[19] Brownbridge, D. R., Marshall, L. F., Andrandell, B.,

“The Newcastle Connection-or Unixes of the World

Unite! Softw,” Pratt. Expert. 12 (Dec.), 1147-1162,

1982.

[20]Bryant, R. M., and Finkel, R. A., “A Stable Distributed

Scheduling Algorithm,” In Proceedings of the 2nd

International Conference on Distributed Computer

Systems (Apr.). IEEE, New York, pp. 314-323, 1981.

[21]Chandy, K. M., Misra, J., and Haas, L. M., “Distributed

Deadlock Detection,” ACM Trans. Compute. Syst. 1, 2

(May), 145-156, 1983.

[22]Cheriton, D. R.M, “The Thoth System: Multi- Process

Structuring and Portability,” American Elsevier, New

York, 1982.

[23]Cheriton, D. R., “An Experiment Using Registers for

Fast Message-Based Inter process Communication,”

Oper. Syst. Rev. 18 (Oct.), 12-20, 1984a.

[24]Cheriton, D. R., “The V Kernel: A Software Base for

Distributed Systems,” IEEE Softw. 1 (Apr.), 19-42,

1984b.

[25]Cheriton, D. R., and Mann, T. P., “Uniform Access to

Distributed Name Interpretation in the V System,” In

Proceedings of The 4th International ConferenceoOn

Distributed Computing Systems. IEEE, New York, pp.

290-297, 1984.

[26] Cheriton, D. R., and Zwaenepoel, W., “The Distributed

V Kernel and its Performance or Disk- Less

Workstations,” In Proceedings of the 9th Sym- Podium

on Operating System Principles. ACM, New York, pp.

128-140, 1983.

[27] Cheriton, D. R., and Zwaenepoel, W., “One-to-Many

Interprocess Communication in the V-System. In

Szgcomm,” „84 Tutorials and Svmposkm on

Communications Architectures and Protocols (Montreal,

Quebec, June 6-8). ACM, New York, 1984.

[28] Cheriton, D. R., Malcolm, M. A., Melen, L. S., and

Sager, G. R. Thoth, “A Portable Real- Time Operating

System,” Commun. ACM 22, 2 (Feb.), 105-115, 1979.

[29]Chesson, G., “The Network Unix System,” In

Proceedings of The 5th Symposium on Operating

Systems Principles,” (Austin, Tex., Nov. 19-21). ACM,

New York, pp. 60-66, 1975.

[30] Chow, T. C. K., and Abraham, J. A., “Load Balancing

in Distributed Systems,” IEEE Trans. Softw. Eng. Se-8

(July), 401-412, 1982.

[31] Chow, Y. C., and Kohler, W. H., “Models for Dynamic

Load Balancing in Heterogeneous Multiplex Processor

Systems,” IEEE Trans. Compute. C-28 (May), 354-361,

1979.

International Journal of Computer Science & Emerging Technologies (IJCSET) 123

Volume 1 Issue 2, August 2010

[32] Chu, W. W., Holloway, L. J., Min-Tsung, L., and Efe,

K., “Task Allocation in Distributed Data Processing,”

Computer 23 (Nov.), 57-69, 1980.

[33]Curtis, R. S., and Wi~Ie, L. D., Global Naming In

Distributed Systems. IEEE Softw. 1, 76-80, 1984.

[34] Dalal, Y. K., “Broadcast Protocols in Packet Switched

Computer Networks,” Ph.D. Dissertation, Computer

Science Dept., Stanford Univ., Stan- Ford, Calif.

[35] Dellar, C., “ A File Server for a Network of Low-Cost

Personal Microcomputers,” Softw. Pratt. Erper. 22

(Nov.), 1051-1068, 2009.

[36]Dennis, J. B., and Van Horn, E. C., “Programming

Semantics for Multiprogrammed Computations.

Commun,” ACM 9, 3 (Mar.), 143- 154, 2009.

[37] Dion, J, “The Cambridge File Server,” Oper. Syst. Reu.

(ACM) 14 (Oct.), 41-49.

[38] Efe, K., “Heuristic Models of Task Assignment

Scheduling in Distributed Systems,” Computer 15

(June), 50-56, 1992.

[39]Eswaran, K. P., Gray, J. N., Lorie, J. N., and Traiger, I.

L., “The Notions of Consistency and Predicate Locks in

a Database System,” Com- Mun. ACM 19, 11 (Nov.),

624-633, 1986.

[40]Farber, D. J., and Larson, K. C., “The System

Architecture of the Distributed Computer System-The

Communications System,” In Proceedings of the

Symposium on Computer Networks (Brooklyn, Apr.).

Polytechnic Inst. of Brooklyn, Brooklyn, N.Y, 1972.

